
Rad AI
Founded Year
2018Stage
Series B | AliveTotal Raised
$83.25MLast Raised
$50M | 6 mos agoMosaic Score The Mosaic Score is an algorithm that measures the overall financial health and market potential of private companies.
+86 points in the past 30 days
About Rad AI
Rad AI provides artificial intelligence solutions for the radiology sector. It focuses on helping physician workflows and patient care. The company offers a suite of products that automate radiology reporting, impressions, worklist prioritization, and patient follow-ups, aiming to save time for radiologists and reduce burnout. It serves the healthcare sector. It was founded in 2018 and is based in San Francisco, California.
Loading...
Rad AI's Product Videos


ESPs containing Rad AI
The ESP matrix leverages data and analyst insight to identify and rank leading companies in a given technology landscape.
The radiology workflow automation market aims to improve the efficiency and accuracy of radiology processes through the use of technology. This includes tasks such as patient scheduling, exam and procedure ordering, patient document management, report generation, and communications. Additionally, the market encompasses various software solutions and platforms that integrate with radiology informat…
Rad AI named as Leader among 10 other companies, including Viz.ai, Sirona Medical, and PaxeraHealth.
Rad AI's Products & Differentiators
Rad AI Impressions
Rad AI Impressions automatically generates the last third of the radiology report (the Impression section), customized to each individual radiologist's preferred language and style. This saves radiologists a median of one hour per 9-hour shift, while reducing fatigue and burnout. Research by a large academic medical center in the Southeast found that Rad AI Impressions reduces the error rate in Impressions by 47% compared to radiologist baseline, on side-by-side comparison of 2,000 CTA reports. Rad AI was the very first generative AI product in healthcare, first released in 2019; it is now in use by nearly half of all US health systems and 9 of the 10 largest US radiology practices, as the most widely adopted generative AI product in healthcare. It is the only commercially successful product of its kind on the market.
Loading...
Research containing Rad AI
Get data-driven expert analysis from the CB Insights Intelligence Unit.
CB Insights Intelligence Analysts have mentioned Rad AI in 6 CB Insights research briefs, most recently on Apr 25, 2024.

Expert Collections containing Rad AI
Expert Collections are analyst-curated lists that highlight the companies you need to know in the most important technology spaces.
Rad AI is included in 4 Expert Collections, including Digital Health.
Digital Health
11,113 items
The digital health collection includes vendors developing software, platforms, sensor & robotic hardware, health data infrastructure, and tech-enabled services in healthcare. The list excludes pureplay pharma/biopharma, sequencing instruments, gene editing, and assistive tech.
Digital Health 50
200 items
The winners of the third annual CB Insights Digital Health 150.
AI 100
100 items
Artificial Intelligence
6,888 items
Rad AI Patents
Rad AI has filed 14 patents.
The 3 most popular patent topics include:
- health informatics
- machine learning
- medical imaging

Application Date | Grant Date | Title | Related Topics | Status |
---|---|---|---|---|
1/28/2022 | 10/1/2024 | Workflow technology, Projectional radiography, Process management, Radiologic signs, Musculoskeletal radiographic signs | Grant |
Application Date | 1/28/2022 |
---|---|
Grant Date | 10/1/2024 |
Title | |
Related Topics | Workflow technology, Projectional radiography, Process management, Radiologic signs, Musculoskeletal radiographic signs |
Status | Grant |
Latest Rad AI News
Sep 30, 2024
In radiology, GenAI holds the potential to stave off radiologist burnout and realise greater personalisation of patient care. Share GenAI in radiology holds the potential to drive efficiencies and improve diagnosis. Speaking at a JP Morgan conference in January 2024, NVIDIA CEO Jensen Huang declared that “this year, every industry will become a technology industry”. During the fireside chat, which preceded NVIDIA ’s March launch of a suite of 25 generative artificial intelligence (GenAI) based microservices designed for imaging and other protocols made available through the company’s cloud-based tech stack, Huang said medical instruments were soon “never going to be the same again”. Go deeper with GlobalData “Ultrasound systems, computed tomography (CT) scan systems, all kinds of instruments – they’re always going to be a device plus a whole bunch of AIs,” said Huang. This year, NVIDIA and other big tech players, including Microsoft , have made further moves in the field of radiology to make this a reality, forging partnerships with academic institutions to test and develop GenAI foundation models for radiology. Foundation models are a form of GenAI that analyse vast unstructured datasets. Using a protocol called transfer learning, the hardware in these models can be trained and made applicable to specific fields and present a straightforward means for healthcare systems to adopt GenAI. See Also: How well do you really know your competitors? Access the most comprehensive Company Profiles on the market, powered by GlobalData. Save hours of research. Gain competitive edge. Not ready to buy yet? Download a free sample We are confident about the unique quality of our Company Profiles. However, we want you to make the most beneficial decision for your business, so we offer a free sample that you can download by submitting the below form By GlobalData Submit Tick here to opt out of curated industry news, reports, and event updates from Medical Device Network. Submit and download Visit our Privacy Policy for more information about our services, how we may use, process and share your personal data, including information of your rights in respect of your personal data and how you can unsubscribe from future marketing communications. Our services are intended for corporate subscribers and you warrant that the email address submitted is your corporate email address. In addition, radiology represents an especially compelling field for the application of GenAI due to the longstanding reality that radiologists are in short supply on a global scale. A 2023 report by the Royal College of Radiologists (RCR) found that the UK currently has a 30% shortfall in radiologists that is forecast to rise to 40% by 2028 unless meaningful action is taken, with seven in ten clinical directors stating there were not enough radiologists to deliver safe and effective levels of patient care. Another report by the Association of American Medical Colleges (AAMC) forecasts that the radiologist shortfall in the US could reach almost 42,000 by 2036. Driving efficiencies in radiology The obvious application of GenAI in radiology lies in improving image quality and aiding physicians in identifying patterns in radiologic images they may not have noticed. While plenty of startups are at work on developing tools for this specific area – either to automatically straighten up or enhance the fidelity of CT and other imaging scans – Rad AI co-founder Jeff Chang sees GenAI’s foremost application in radiology as taking the load off of radiologists by assisting with report summarisation. As a trained radiologist, Chang calls this one of the most time-consuming tasks undertaken by radiologists. “When you think about what radiologists actually do, we spend most of our time dictating reports,” says Chang. Looking at radiology images is the straightforward aspect of a radiologist’s role, Chang says, and there are certain patterns radiologists readily pick out and take note of for their evaluations. “But then, we spend most of our time dictating the report, and we’re dictating 100-200 reports per day, and so the way to save radiologists time is to reduce the amount of time they spend dictating. “Our first product, which we released in 2019, automatically generates the last third of the radiology report, which includes the impression section, conclusions, summarisation, and follow up recommendations. “That way, as soon as a radiologist dictates what they see on the images, which forms the first part of the report, our product automatically generates the last part.” According to Chang, Rad AI’s product saves physicians a median of around one hour per nine-hour shift. GenAI in radiology also presents an opportunity for personalising patient care, with the ability to synthesise patients’ healthcare history data by connecting datasets from different kinds of radiology together. “If, for example, a patient in a healthcare system is getting ultrasounds plus CT scans, plus MRI, all of those can be stitched together, to really see the patient journey and include that patient’s clinical information,” says Emily Lewis, AI, and innovation lead at biopharmaceutical company UCB . “This is an important aspect in being able to personalise that patient’s care and put a treatment plan together.” GenAI challenges GenAI is not currently a foolproof tool since foundation models often get trained on broad datasets, and there is no telling whether all of the information is accurate. Incorrect data or misleading conclusions presented by a GenAI model are known as hallucinations, and a recent study by AI startup Mendel and the University of Massachusetts Amherst (UMass Amherst), which detects hallucinations in AI-generated medical summaries, concluded that they remain a “grave” concern to the healthcare industry. “We work with over half a billion radiology reports from all across the US, so being able to have that clinical context, having the pre-processing and post-processing capabilities to ensure clinical accuracy, you have to be using a product that does all of that for it to be successful in clinical use,” notes Chang. Emily Lewis’s view is that for GenAI systems being used in radiology, keeping a human in the loop to monitor their performance will be needed for the foreseeable future. “Up until now, AI models have been predicting the next word. It’s just a stochastic parrot where it’s reiterating what it’s been trained on. And because it’s been trained on the entire internet, it’s not necessarily trained on factual information.” This may soon change, however, with the recent release of OpenAI’s 01. According to the company, the models are designed to spend more time thinking before they respond, meaning they can reason through complex tasks and solve harder problems than previous models in science, coding, and mathematics. “They’re trying to anchor in more trusted data from respected sources and have that reasoning component,” says Lewis. “There should be national standards for ensuring the safety and effectiveness of models, as well as local validation. “A lot of that is going to fall on clinical health systems to understand, to have metrics on their models, and make sure they’re monitoring them over the long term.” According to Lewis, this is an especially heavy burden for local level healthcare centres and the main reason why the application of AI in the US is predominantly being seen at large medical centres and academic institutions. “These gold standard places have the funding, resourcing, and a lot of the expertise. It is yet to be seen how this is going to translate to the community health centres of the world.” Pre-trained with radiologic specificity In essence, foundation models are only as good as the data that adopters train them on. Ethical and privacy concerns and the cost around data acquisition are all playing a role in this challenge, and potentially a lack of regulation around AI on the part of the US Food and Drug Administration (FDA). For radiology, the remedy to the issue of potentially unreliable or plainly limited data to work upon exists in pre-trained, radiology-specific foundation models such as Australia-based Harrison.ai’s dialogue-based LLM, Harrison.rad.1. This emergent alternative is different to the provision of foundation models that adopters then have to train on their own potentially limited datasets, or worse, unvalidated radiological images pulled from the internet. “Harrison.rad.1 has been trained on real-world, diverse and proprietary clinical data, comprising millions of radiological images, studies and reports,” explains Harrison.ai CEO Dr Aengus Tran. “The dataset has further been annotated at scale by a large team of medical specialists to provide Harrison.rad.1 with clinically accurate training information.” Tran demonstrates this by highlighting the performance of the company’s AI in radiology examinations designed for human radiologists, and claims that Harrison.rad has outperformed other foundational models in several benchmarks. “Specifically, it surpasses other foundational models on the challenging Fellowship of the Royal College of Radiologists (FRCR) 2B Rapids examination – an exam that only 40%-59% of human radiologists pass on their first attempt. “When reattempted within a year of passing, radiologists score an average of 50.88 out of 60. Harrison.rad.1 performed on par with accredited and experienced radiologists at 51.4 out of 60, while other competing models such as OpenAI’s GPT-4o, Google ’s Gemini-1.5 Pro and Microsoft ’s LLaVA-Med scored below 30 on average.” The potential for GenAI to play an appreciable role in improving existing processes in radiology and alleviating pressures on radiologists in healthcare systems is clear, but barriers remain around the costs associated with the adoption and effective deployment of GenAI, along with the acquisition of sufficient data resources to make adoption worthwhile, although radiology-specific companies offering pre-trained foundation models are changing this. Once regulation around AI in the US catches up with the rate of innovation, and as adoption of the technology in radiology continues, GenAI’s longevity and its true role in transforming the radiology space for the better should become clear. Sign up for our daily news round-up! Give your business an edge with our leading industry insights.
Rad AI Frequently Asked Questions (FAQ)
When was Rad AI founded?
Rad AI was founded in 2018.
Where is Rad AI's headquarters?
Rad AI's headquarters is located at 548 Market Street, San Francisco.
What is Rad AI's latest funding round?
Rad AI's latest funding round is Series B.
How much did Rad AI raise?
Rad AI raised a total of $83.25M.
Who are the investors of Rad AI?
Investors of Rad AI include Gradient Ventures, Artis Ventures, OCV Partners, Kickstart Fund, QuantumLight and 16 more.
Who are Rad AI's competitors?
Competitors of Rad AI include Ferrum Health, Solventum, Eon, Agamon, Inference Analytics and 7 more.
What products does Rad AI offer?
Rad AI's products include Rad AI Impressions and 2 more.
Who are Rad AI's customers?
Customers of Rad AI include Kaiser Permanente, https://hcahealthcare.com/, AdventHealth, Radiology Partners and Radiology Associates of North Texas (RANT).
Loading...
Compare Rad AI to Competitors

Agamon is a health-tech company that focuses on improving imaging patient workflow management within the healthcare industry. The company offers a platform that uses advanced Generative AI technology to automate the process of detecting actionable findings in radiology reports, notifying referring physicians, and tracking follow-up adherence. Agamon primarily serves healthcare systems and imaging centers. It was founded in 2017 and is based in Tel Aviv-Yafo, Israel.

Medicom specializes in healthcare interoperability and operates within the health information technology sector. The company offers a federated health information network that aggregates and facilitates the exchange of health data through a single interface, enabling healthcare providers to access and share clinical records. Medicom's primary customer segments include the healthcare industry, government health agencies, and life sciences organizations. It was founded in 2015 and is based in Raleigh, North Carolina.

Sirona Medical specializes in providing a cloud-native radiology operating system known as RadOS, which serves the healthcare sector by modernizing radiology practices. The company offers an AI-powered platform that integrates various radiology IT applications such as diagnostic viewing, reporting, and image archiving, accessible from anywhere to enhance workflow efficiency and productivity. Sirona Medical's solutions cater to radiology practices looking to streamline operations and leverage advanced technology for improved patient care. It was founded in 2018 and is based in San Francisco, California.

Iodine Software specializes in AI-enabled solutions for healthcare finance and revenue cycle management. The company offers a suite of solutions that leverage machine learning to enhance clinical documentation integrity and optimize revenue capture for healthcare organizations. Iodine Software primarily serves the healthcare industry, with a focus on hospitals and healthcare systems seeking to improve financial performance and patient care. It was founded in 2010 and is based in Austin, Texas.

Yellow.ai develops conversational artificial intelligence (AI) operating in the technology and artificial intelligence domain. The company offers a dynamic automation platform (DAP) that uses generative AI to automate and personalize customer support, commerce, and employee experiences. It primarily serves sectors such as banking, healthcare, utilities, and retail. Yellow.ai was formerly known as Yellow Messenger. The company was founded in 2016 and is based in San Mateo, California.
Epic is a health IT company focused on developing healthcare software. The company specializes in creating software solutions that facilitate patient care and support healthcare providers in improving treatment outcomes. Epic's software is used by healthcare professionals and patients to enhance the quality of care and support health and wellness. Epic was formerly known as Human Services Computing, Inc.. It was founded in 1979 and is based in Verona, Wisconsin.
Loading...